Microbially Enhanced Carbon Capture and Storage by Mineral-Trapping and Solubility-Trapping

ANDREW C. MITCHELL,* † ,§
KNUD DIDERIKSEN,∥ LEE H. SPANGLER,†
ALFRED B. CUNNINGHAM,† AND
ROBIN GERLACH ‡

Center for Biofilm Engineering, Montana State University, Bozeman, Montana, 59717, Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, and NanoGeoScience Group, Nano-Science Center, Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

Received November 4, 2009. Revised manuscript received March 24, 2010. Accepted April 6, 2010.

The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO2 is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO2)] of 13C labeled CO2 and the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO2) demonstrated that no net precipitation of CO2(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO2(g) into the brine. This reduced the headspace concentration of CO2 by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO2, this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO2(g) leakage reduction.

Introduction

Geologic sequestration of carbon dioxide, also known as carbon capture and storage (CCS), is one strategy to reduce the emission of greenhouse gases generated through the combustion of fossil fuels. Geologic sequestration of CO2 involves the injection of supercritical CO2 (SC–CO2; critical point = 31.1 °C and 73 atm) into underground formations such as oil bearing formations, deep mineable coal seams, and deep saline aquifers (1, 2). Methods that can trap CO2 in a nonlabile phase would be advantageous in the development of subsurface CO2 storage as a viable engineered mechanism to reduce the net emission of CO2 from fossil fuel combustion (2–5). This includes so-called mineral-trapping, where carbonate ions from the injected CO2 can be incorporated into a solid carbonate mineral, and solubility-trapping, where aqueous inorganic carbon species are contained in the formation water itself (6), SC–CO2 injection into deep underground formations can result in elevated pressure in the region surrounding the point of injection. As a result, an upward hydrodynamic pressure gradient may develop across the trapping cap-rock, leading to the upward leakage of CO2, due to the primary permeability of the cap-rock, through fractures, or near injection wells (2). Therefore, methods that can simultaneously reduce such leakage and facilitate trapping CO2 in nonlabile forms would be advantageous. Calcium is the most abundant cation in many surface- and ground-waters (7) and therefore mineralization in CaCO3, a common rock forming mineral, may provide an effective means of immobilization during mineral-trapping. Equally, amendments to brine chemistry may enhance the capacity of the brine for CO2(g) and dissolved carbonate ions, thus increasing the solubility-trapping capabilities.

Laboratory and field studies into SC–CO2-fluid-rock interactions are limited, but general processes have been investigated for injection into brine formations (8). Injection of CO2 into brine aquifers initially reduces the pH of the brine by 1.5–4 pH units due to the dissolution of CO2 and dissociation of H2CO3 (eqs 1–4) (7) depending on the brine chemistry, formation lithology, and temperature (9). However, carbonate alkalinity is also produced by the reaction of H2CO3 with reservoir minerals (8–10), and computational and laboratory experiments suggest that overall, pH actually increases by around 0.5 to 1 units relative to the preinjection brine (9).

Mineralization of injected CO2 into CaCO3 will be possible if the equilibrium of the reaction Ca2+ + CO32– → CaCO3 can be moved to the right and the saturation state of CaCO3 is exceeded. This may be achievable if sufficient dissolved Ca is present, if pH and alkalinity can be increased, and if appropriate nucleation substrates are present (7). Microbiologically enhanced CaCO3 precipitation offers a potential mechanism to achieve this in situ. Microbes have been shown to enhance CaCO3 precipitation via cation adsorption to negatively charged functional groups on probe surfaces and by metabolically driven changes in the solution chemistry, which increase mineral saturation and induce nucleation (11). An increase in pH, CO32−, and HCO3− can be caused for instance by bacterial ureolysis (the enzymatic hydrolysis of urea) (12), sulfate, iron, or nitrate reduction (13, 14), or alkalization during photosynthesis (15). In subsurface environments, CaCO3 precipitation induced by the ureolysis of injected urea has been investigated as a potential method to reduce bedrock porosity for enhanced oil recovery (16) and for coprecipitating radionuclides from groundwater in the vadose zone of contaminated aquifers (12, 17–19).
Ureolysis results in the production of ammonium (NH₄⁺), dissolved inorganic carbon (DIC), and an increase in pH via a net production of OH⁻ ions (eqs 5–9), which favors CaCO₃ precipitation (eqs 10 and 11).

CO₂(g) Dissolution and Disassociation.

\[
\text{CO}_2(g) \leftrightarrow \text{CO}_2(aq) \tag{1}
\]
\[
\text{CO}_2(aq) + \text{H}_2\text{O}(l) \leftrightarrow \text{H}_2\text{CO}_3 \tag{2}
\]
\[
\text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- + \text{H}^+ \tag{3}
\]
\[
\text{HCO}_3^- \rightarrow \text{CO}_3^{2-} + \text{H}^+ \tag{4}
\]

Ureolysis.

\[
\text{CO(NH}_2\text{)}_2 + \text{H}_2\text{O} \rightarrow \text{NH}_2\text{COOH} + \text{NH}_3 \tag{5}
\]
\[
\text{NH}_2\text{COOH} + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{H}_2\text{CO}_3 \tag{6}
\]
\[
\text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- + \text{H}^+ \tag{7}
\]
\[
2\text{NH}_3 + 2\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- \tag{8}
\]
\[
\text{HCO}_3^- + \text{H}^+ + 2\text{OH}^- \rightarrow \text{CO}_3^{2-} + 2\text{H}_2\text{O} \tag{9}
\]

Overall Ureolysis and CaCO₃ Precipitation.

\[
\text{NH}_2\text{CONH}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + \text{CO}_3^{2-} \tag{10}
\]
\[
\text{Ca}^{2+} + \text{CO}_3^{2-} \leftrightarrow \text{CaCO}_3(s) \tag{11}
\]

The ability of ureolysis to operate in dark subsurface environments, and the high rates of ureolysis induced CaCO₃ precipitation relative to sulfate reduction induced CaCO₃ precipitation (13, 18), provides a viable mechanism to induce subsurface CaCO₃ precipitation and CO₂ mineralization. Additionally, the associated reduction in porosity in subsurface environments would reduce the potential of CO₂ leakage after injection has ceased. The change in brine chemistry during ureolysis may also enhance the solubility trapping capacity of the brine through pH changes and thus carbonate ion speciation (7). Additionally, microbial biofilms, which are assemblages of microorganism attached to a surface, have shown remarkable resilience to SC-CO₂. This suggests microorganisms in a biofilm form may offer physical, chemical, and biological mechanism to enhance CCS under high pressure during and after injection of SC-CO₂ (4, 5, 21) (Figure 1).

Here the effect of bacterially induced ureolysis on CaCO₃ precipitation was investigated for a range of fixed initial CO₂ headspace pressures and urea concentrations in synthetic brine mimicking the Powder River Basin in Wyoming, a prospective CO₂ injection site in the western U.S. (20). Lower than reservoir pressure conditions are considered in this study in order determine the general relationship between ureolysis, mineral formation, and carbonate sources, as well as to ensure the applicability of modeling results, for which accurate thermodynamic data exists.

Experimental Methods

Experimental Setup. Batch CO₂ precipitation microcosms were prepared in sterile 35 mL serum bottles in a laminar flow hood. Each microcosm included 20 mL of a synthetic brine (SB) with approximately 5 g L⁻¹ total dissolved solids (TDS), mimicking the ionic ratios present in the proposed Powder River Basin CO₂ injection site (20). Specific inorganic constituents of the SB are shown in the Supporting Information (SI) Table 1. Three SBs were produced with different urea [(NH₄)₂CO₃] concentrations of 1.5, or 20 g L⁻¹, to simulate the addition of varying concentrations of urea to the aquifer. Test and control SB microcosms were prepared. Test SB microcosms included the ureolytic organism *Sporosarcina pasteurii* (ATCC 11859, gram-positive, spore-forming, urease positive), known to induce CaCO₃ precipitation (12, 17, 19). Spore forming bacilli have been shown to be resistant to high pressures and the exposure to SC-CO₂ (4, 5, 21). Biotic control experiments included the nonureolytic gram-positive bacterium *Bacillus subtilis* strain 186 (ATCC 23857). Abiotic control experiments included just the SB with no bacterial amendments. The headspace (15 cm³) of each vial was then purged with 0.2 µm filter sterilized 99% δ¹³C-CO₂ (Cambridge Isotope Laboratories, MA) for 1 min, and final headspace p(CO₂) of 1, 1.35, and 1.7 atm were attained by measurement with a headspace pressure gauge. A set of microcosms was also retained with an atmospheric pressure air headspace (390 ppm p(CO₂) at 1 atm = 0.00039 atm p(CO₂)). The microcosms were incubated at 22 °C on a shaker at 100 rpm for 8 days. While headspace pressures are far lower than expected during deep subsurface SC-CO₂ injection (>73 atm) (8), these microcosms allow investigation of the general relationship of p(CO₂) and ureolysis on carbonate precipitation. Additionally, even in deep subsurface brines the p(CO₂) will likely vary significantly due to the advective and diffusive transport of CO₂ from the injection point over time (22). The SB was characterized for pH, dissolved Ca, and NH₄⁺ immediately after inoculation and headspace adjustment (time (t) = 0, t₀), and again after 8 days (t₈) (See SI). At the termination of the experiments any CaCO₃ precipitates formed in the microcosms were characterized by X-ray diffraction system (XRD) and analyzed for δ¹³C (SI, eq 1).

Speciation and Saturation Modeling. PHREEQC (23) was used to model inorganic carbon speciation and carbonate mineral saturation in microcosm experiments simulating CO₂ injection into the Powder River Basin brine with p(CO₂) of 0.00039, 1, and 1.7 atm. All calculations were carried out at 25 °C and used the MINTEQ database (24), to which the thermodynamic constants for urea was added (25) (see SI). PHREEQC calculates the saturation index (S) of the reacting solution with respect to calcite according to
where $[Ca^{2+}]$ and $[CO_3^{2-}]$ are the activities of dissolved Ca$^{2+}$ and CO$_3^{2-}$, and K_{sp} is the equilibrium calcite solubility product (7).

Results and Discussion

Synthetic Brine Chemistry. At t_0, the biotic test ($S. pasteurii$), biotic control ($B. subtilis$), and abiotic control experiments under different p(CO$_2$) and initial urea concentrations exhibited starting chemistries consistent with the SB (SI Table 1), with dissolved Ca concentrations of \sim17 mM (Figure 2; SI, Table 2). NH$_4^+$ concentrations were \sim0.4 mM, likely due to some limited abiotic urea hydrolysis. The initial pH of the SB with p(CO$_2$) of 0.00039 atm was \sim6, with lower pH (between 4 and 5) exhibited in the SB with higher p(CO$_2$) (1 to 1.7 atm), consistent with a higher concentration of protons liberated from the disassociation of carbonic acid at higher p(CO$_2$) (Figure 2; SI, Table 2) (7). The SB at t_0 was undersaturated with respect to calcite at all p(CO$_2$). The predicted calcite saturation index ($S_{calcite}$) decreased from approximately -1 to -4 with p(CO$_2$) increasing from 0.00039 to 1.7 atm (Figure 3).

After 8 days (t_8), biotic control and abiotic control experiments under different p(CO$_2$) and initial urea concentrations demonstrated very little, if any, NH$_4^+$ production associated with some limited abiotic urea hydrolysis, but the pH remained largely unchanged (Supporting Information, Table 2). Dissolved Ca concentrations remained unchanged relative to t_0, indicating no CaCO$_3$ precipitation in biotic and abiotic control experiments, consistent with the unchanged and undersaturated solution from t_0. This would be expected with the biotic control inoculated with the non ureolytic organism, $B. subtilis$, or with the abiotic control without bacterial amendment, as has been observed previously ($12, 17, 18, 26$).

Conversely, in the biotic test experiments, NH$_4^+$ concentrations increased, consistent with the hydrolysis of urea by $S. pasteurii$ ($12, 17, 27, 28$). All available urea was hydrolyzed in the 1 g L$^{-1}$, 5 g L$^{-1}$, and 20 g L$^{-1}$ experiments, under different p(CO$_2$), which is consistent with previous studies using up to 20 g L$^{-1}$ ($12, 16, 26, 28$). The pH also increased in the $S. pasteurii$ inoculated experiments, with relative increases in pH during the experiments proportional to the amount of urea hydrolyzed, and thus proportional to the initial urea concentrations (Figure 2).

Calcium Carbonate Precipitation in Synthetic Brine at Different p(CO$_2$). Dissolved calcium concentrations decreased by between 97 and 100% in the biotic experiments with p(CO$_2$) of 1, 1.3, and 1.7 atm and with 5 or 20 g L$^{-1}$ urea (Figure 2; SI, Table 2). Dissolved Ca reductions were slightly lower, at between 87 and 98% in the biotic experiments with p(CO$_2$) of 0.00039 atm and 5 or 20 g L$^{-1}$ urea. This was consistent with the precipitation of up to 17 mM CaCO$_3$ (Figure 3). Biotic test experiments with 1 g L$^{-1}$ urea exhibited only a slight decrease in dissolved Ca at elevated p(CO$_2$) (Figure 2; SI, Table 2) but significant reduction in dissolved Ca at 0.00039 atm. This precipitation of CaCO$_3$ in the 0.00039 atm treatments is explained by the initially higher saturation index compared to the treatments with higher initial p(CO$_2$) (Figure 3).

XRD analysis confirmed the CaCO$_3$ polymorph precipitated was calcite, although small amounts of vaterite and aragonite were morphologically observable by scanning electron microscopy (SEM) (data not shown).

Inorganic Carbon Speciation in CaCO$_3$ and Artificial Brine. 13C-CaCO$_3$ was used to discriminate the origin and proportion of carbonate ions in precipitated calcite under different p(CO$_2$) and urea concentrations (SI, Table 3). Urea and 13C-CO$_2$ provide two potential carbonate ion sources in the microcosm experiments simulating CO$_2$ injection into the Powder River Basin brine aquifer. The 13C-CO$_2$ had a δ^{13}C of $+89000$‰ ($= 99$% 13C-CO$_2$; see SI, eq 2 for details), and the urea used exhibited a δ^{13}C of -40.6‰. The SB also

![Figure 2](image-url)
the natural abundance of 13C on Earth, and consistent with carbon originally from the 13C indicating the precipitated calcite was heavily enriched with a $0.00039 \text{ atm } p(\text{CO}_2)$ exhibited equilibrate within 12 to 24 h (Figure 3, Table 3). Transport of 13C from the gas phase to the aqueous phase would occur without a net flux of carbon from the gas phase.

FIGURE 3. Synthetic brine CaCO$_3$ (calcite) saturation index (S_{CaCO_3}) at time t_0 and mass of CaCO$_3$ precipitated (mM) at time t_0 and t_8 (8 days) at varying CO$_2$(g) headspace pressures and urea concentrations in CO$_2$ biomineralization experiments inoculated with Sporosarcina pasteurii.

contained 0.25 mM MgCO$_3$, with a δ^{13}C of -8.0 %o. The δ^{13}C–CaCO$_3$ of calcite precipitated from the 1, 1.3, and 1.7 atm p(CO$_2$) microcosms ranged from +4.0 to +57877 %o, indicating the precipitated calcite was heavily enriched with carbon originally from the 13C–CO$_2$(g) over the brine (SI, Table 3).

Natural isotopic equilibrium fractionation can be expected during CO$_2$(g) dissolution and disassociation, between CO$_2$(g) and dissolved bicarbonate, but this will only account for an increase of +7.9 to +8.4 % (29). Calcite precipitated with 0.00039 atm p(CO$_2$) exhibited δ^{13}C–CaCO$_3$ of +1.1, reflecting the natural abundance of 13C on Earth, and consistent with most natural calcites precipitated at ambient p(CO$_2$) (29). These data demonstrate that the 13C as a % of total C in CaCO$_3$ increased with increasing p(CO$_2$) for each of the urea concentrations (Figure 4a). Additionally, higher urea concentrations increased the proportion of 13C incorporated into CaCO$_3$ at a given p(CO$_2$), from an average of 8.3% at 1 g L$^{-1}$ to 31% at 5 g L$^{-1}$ and 37% at 20 g L$^{-1}$ (Figure 4a). A maximum of 65% of carbon from the original atmosphere of the microcosm was precipitated in calcite. It can be seen from the stoichiometry of the ureolysis reaction (eqs 10 and 11), that no net precipitation of CO$_2$(g) in CaCO$_3$ occurred during urea hydrolysis-induced mineral-trapping. However, the increase in δ^{13}C–CaCO$_3$ with increasing p(CO$_2$) and at higher urea concentrations with equivalent p(CO$_2$) demonstrates that (i) ureolysis enhances the proportion of carbonate ions precipitated in CaCO$_3$ that have not been included in the model. From PHREEQC calculations, the 13C content of the precipitated calcite was predicted based on the assumption that the equilibrium of C isotopes in solution and gas phase occurred at rates much faster than the calcite precipitation. Previous studies demonstrate precipitation occurs over 2–3 days (12), versus equilibration of C isotopes in solution and gas phase which occurs within 12 to 24 h (30, 31), so the assumption is valid. For each step of urea hydrolysis, the sequence of the calculation was (i) addition of 1 mM carbonate with the amount of calcite precipitated in the experiments, as observed previously (32), an effect that has not been included in the model. From PHREEQC calculations, the δ^{13}C content of the precipitated calcite was calculated from the mass and isotope composition of the C isotopes in solution and gas phase [initial δ^{13}CO$_2$ = 89 000‰] based on mass balance; (ii) when calcite precipitated in brine (SI, Table 3) is largely in agreement with the experimental values. The actual amount of Ca scavenged in experiments with 1 g L$^{-1}$ urea is slightly larger than in the calculations. Possibly, this may reflect Ca adsorption to bacterial surfaces in the experiments, as observed previously (32), an effect that has not been included in the model. From PHREEQC calculations, the δ^{13}C content of the precipitated calcite was predicted based on the assumption that the equilibrium of C isotopes in solution and gas phase occurred at rates much faster than the calcite precipitation. Previous studies demonstrate precipitation occurs over 2–3 days (12), versus equilibration of C isotopes in solution and gas phase which occurs within 12 to 24 h (30, 31), so the assumption is valid. For each step of urea hydrolysis, the sequence of the calculation was (i) addition of 1 mM carbonate with δ^{13}C = 0‰ to the solution to reflect urea hydrolysis; (ii) δ^{13}C of the C isotopes of the solution and the gas phase [initial δ^{13}CO$_2$ = 89 000‰] based on mass balance; (iii) when calcite precipitated from supersaturated solutions, its C isotope composition reflected that of the dissolved carbonate. At the end of urea hydrolysis, when 100 mM of urea had been hydrolyzed, the final C isotope composition of the calcite was calculated from the mass and isotope composition of the solid precipitated at each step.

The modeled C isotope compositions are more positive than those determined experimentally, especially for the experiments with 1 g L$^{-1}$ urea (Figure 4b; SI, Table 3). The difference between measured and predicted values correlates with the amount of calcite precipitated in the experiments,
where experiments precipitating only a small mass of calcite display very light isotope compositions relative to that measured. A likely explanation for this is that all isotope analyses are influenced by carbon contamination from the bacterial biomass, that accumulated on the crystal surfaces during filtration, or within the crystals, as demonstrated previously (12). Such organic carbon is isotopically lighter with respect to carbon, therefore exhibiting a lower δ13C.

PHREEQC modeling suggested the discrepancy between measured and modeled δ13C values could be accounted for by the mass of bacterial carbon in the experiments (50 mg L⁻¹) (Figure 4b, SI, Table 3). However, it is unclear if such an extensive digestion of organic material by the standard phosphoric acid digestion used during C isotope analysis of carbonate is possible (33).

In addition, in all calculations outlined here, it was assumed that dissolved carbonate and CO2(g) are at isotopic equilibrium. It is possible that this is not the case and that C isotopes of dissolved carbonate only equilibrated partly with the atmosphere during the initial calcite precipitation. Because the hydrolysis of urea is completed faster in the 1 g L⁻¹ experiments, such an effect would influence results from these experiments the most. Indeed, the modeled values differ mostly from the measured values for the 1 g L⁻¹ experiments. However, without detailed knowledge of the kinetics of C isotope exchange and urea hydrolysis, we cannot quantify the effect of partial isotope equilibration. Nevertheless, the combination of a feasible mass of organic carbon in the experiments, and partial equilibration of organic carbon and dissolved carbonate and CO2(g) appear to account for the observed δ13C of the CaCO3.

Evolution of Brine Chemistry and Carbonate Speciation As a Function of Ureolysis Progress. The capacity of the brine for carbonate ions and the precipitation of CaCO3 is controlled by the complex interplay of carbonate equilibrium and pH (7). We therefore evaluated the detailed evolution of the brine chemistry and carbonate precipitation using PHREEQC (23) in order to elucidate the detailed changes in carbonate speciation and fluxes between the gas, solid, and solution phases. This was undertaken for the Powder River SB chemistry used in the microcosm experiments, including 17 mM Ca (SI, Table 1) at 0.00039, 1.0, and 1.7 atm p(CO2). This was also undertaken for other theoretical groundwater, based upon the chemistry of the Powder River Basin, but including Ca concentrations of 2 mM, equivalent to many common groundwater compositions (34, 35) and 125 mM Ca, equivalent to many oil field brines (36, 37) (Figure 5; SI, Figure 1).

The modeling for solutions including 17 mM Ca demonstrate that after equilibration of the groundwater solutions with the headspace CO2(g), for p(CO2) above atmospheric pressure, (i) ureolysis increases pH, via the net production of hydroxide ions and consumption of protons (eq 8). (ii) Once supersaturated, CaCO3 precipitates, and the degree of ureolysis required for the induction of precipitation is greater at higher initial p(CO2) because it takes longer for the pH to increase to the point where the solution is saturated with respect to calcite. In addition, at higher initial p(CO2), the proportion of carbonate ions precipitated in CaCO3 decreases at a given degree of ureolysis, with a greater proportion remaining as aqueous carbonate ions [CO3²⁻]. (iii) Head-space p(CO2) decreases, as long as ureolysis continues and pH is increasing, as the carbonate ion capacity and aqueous carbonate ion concentration increases in response to the increasing pH. Here, at higher initial p(CO2), the mass of CO2 dissolving into the groundwater solutions, and thus the concentration of CO3²⁻ increases, at a given degree of ureolysis. This reduced the headspace concentration of CO2 by up to 32 mM per 100 mM urea hydrolyzed (Figure 5). Modeling results for calcium concentrations of 2 mM and 125 mM demonstrate the same general trends (SI, Figure 1). However, increased calcium concentrations lower the pH attained at a given degree of ureolysis due to the precipitation of CaCO3, which results in the liberation of protons during the conversion of HCO3⁻ to CO3²⁻ (eqs 4 and 11). Therefore at higher calcium concentrations, a greater mass of urea has to be hydrolyzed to attain a particular pH and DIC concentration, via the flux of CO2(g) into solution as the carbonate ion capacity and aqueous carbonate ion concentration increases in response to the increasing pH.

The Potential of Microbially Enhanced CCS. The data presented here suggest the potential of microbial ureolysis to increase the rate of mineral-formation and enhance solubility-trapping of CO2 injected into brine aquifers. This occurs primarily via the pH increase induced by ureolysis which induces carbonate precipitation and increases the carbonate capacity of the SB (7).

While CaCO3 is precipitated, the moles of calcite precipitated were equal to or less than the moles of urea derived carbonate ions. Thus, no net precipitation of CO2(g) in CaCO3 occurred during urea hydrolysis-induced mineral-trapping. Additionally, the consumption of Ca²⁺, and the likelihood that this will not be replenished via equilibration because of the concurrent rise in pH, may reduce the magnitude of natural carbonation in the aquifer. However, the precipitation
of CaCO$_3$ by ureolysis in the brine provides a number of distinct engineering advantages. First, ureolysing organisms appear to be ubiquitous in surface and subsurface soils (19, 38) and S. pasteurii has been shown by us to be ureolytically active at pressures and temperatures relevant to geologic carbon sequestration scenarios ($P > 89$ bar, $T > 32^\circ$C) (39). Thus engineering solutions could likely rely on the stimulation of native organisms to induce CaCO$_3$ precipitation. Second, wastewater provides a potential supply of waste urea. If wastewater urea sources can be utilized in this process, it may provide the simultaneous and advantageous degradation of urea waste, and thus a reduction in labile earth surface carbon, and the mineral- and solubility-trapping of injected CO$_2$. The annual volume of wastewater was 1.347 km3 yr$^{-1}$ in Europe, North America and Asia in 1995 (40). Wastewater commonly includes urea concentrations of 20 g L$^{-1}$ (333 mM) (41), which is more than required to maintain calcite supersaturation in groundwater with chemistries like those of the Powder River Basin, and to precipitate out all available dissolved Ca even in concentrated oilfield brines with Ca concentrations of 125 mM or more (SI, Figure 1). Third, the precipitation of CaCO$_3$ in the subsurface provides a means to decrease formation porosity and reduce the potential of CO$_2$ leakage. For example, subsurface ureolysis induced carbonate precipitation has been investigated for permeability reduction for enhanced oil recovery and radionuclide contaminant sequestration (16).

The main potential limitation of microbially enhanced CCS is the ability of microorganisms to withstand high pressure and SC-CO$_2$. Planktonic cells (free floating) show limited resistance to SC-CO$_2$. Twenty-two tested vegetative species of microorganisms reported in the literature were completely deactivated at some combination of pressure and temperature in the presence of SC-CO$_2$ (21). However, biofilms, which are microorganism assemblages firmly attached to a surface, appear to exhibit a higher resistance to SC-CO$_2$ (4, 5). For example, a 19 min exposure to 35°C, 136 atm SC-CO$_2$ resulted in a 3 log$_{10}$ viability reduction of planktonic Bacillus mojavensis cells, but resulted in only a 1 log$_{10}$ reduction in viable cell numbers from biofilm cultures. It is hypothesized that the small reduction in the viability of biofilm microorganisms reflects the protective role of the biofilm extracellular polymeric substances (4, 5). The resilience of microorganisms in biofilm states, to high pressure gaseous and SC-CO$_2$ suggests microbially enhanced mineral-trapping and solubility-trapping of CO$_2$ during CCS may be effectively used. In conclusion, a microbial ureolysis based approach appears to offer potential for enhancing CCS by (i) increasing the flux of gas into the brine, and the capacity of brine for carbonate ions, and (ii) the formation of carbonate minerals, potentially reducing formation porosity and the potential of CO$_2$ leakage to the surface. The apparent resilience of biofilm-organisms to SC-CO$_2$ suggests these and other micobiologically mediated processes may offer the ability to enhance the capacity and rates of CO$_2$ trapping.

Acknowledgments

Funding was provided from the U.S. Department of Energy (DOE) Zero Emissions Research Technology Center (ZERT), Award No. DE-FC26-04NT42262 and DOE EPCOR Award No. DE-FG02-08ER46527 as well as a European Union (EU) Marie Curie Postdoctoral Fellowship to ACM. Support for the Environmental and Biofilm Mass Spectrometry Facility through DURIP, Contract Number: W911NF0510255 and the MSU Thermal Biology Institute from the NASA Exobiology Program Project NAG5-8807 is acknowledged.

Supporting Information Available

1. Details regarding the experimental methods for the microcosm experiments, 2. Information on experimental details and calculations regarding the 13C fraction in the precipitated carbonates, 3. Information regarding the geochemical modeling. A detailed explanation on how the amount of bacterial organic carbon in filtered CaCO$_3$ samples was determined. Three tables and one additional figure are also included. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited
