Mathemateg a Ffiseg / Mathematics & Physics
http://hdl.handle.net/2160/14
2017-05-23T15:05:10ZMathematics by the sea
http://hdl.handle.net/2160/44068
Mathematics by the sea
Fletcher, Colin R.
2002-01-01T00:00:00ZTemperature and emission diagnostics of the solar corona: mapping plasma characteristics using multi-channel Extreme UltraViolet observations
http://hdl.handle.net/2160/43432
Temperature and emission diagnostics of the solar corona: mapping plasma characteristics using multi-channel Extreme UltraViolet observations
Leonard, Andrew
The solar corona is a hot, magnetised plasma of which several important aspects
remain poorly understood. The Atmospheric Imaging Assembly (AIA) provides
very high resolution images of the Sun in several extreme ultraviolet channels. AIA
offers a unique chance to improve our understanding of the corona - qualitatively
through detailed viewing of dynamic events and quantitatively through density and
temperature diagnostics.
This thesis presents a new software tool to quickly estimate coronal characteristics
using AIA data. The method creates high-resolution temperature and emission
measure maps of the whole solar disk within minutes. A slower but more thorough
version is also developed as a comparison, and complimentary to, the main method.
Both methods are tested extensively on synthetic data calculated from known temperature
distributions and are then applied to real data. A prototype method for
fast estimation of coronal line-of-sight emission distribution is also presented. A
broad study investigates the characteristics of various coronal regions. The results
are compared to previous works and found to be consistent, although the combination
of values produced by the two methods reveals material cooler than that found
by other studies, particularly at coronal hole boundaries. Another investigation applies
the fast method to two sets of flaring active regions. A weak correlation exists
between the flare size and mean temperature of the region for a small number of
flares in one set. In the other set each region’s temperature variability over time
is compared to a non-flaring region’s. The flaring regions’ mean temperatures are
found to vary more than the non-flaring region’s - significantly more in several cases.
This gives confidence in using such diagnostics as part of a future flare prediction
method. The fast temperature map method presented here offers a significant speed
advantage over similar methods, whilst maintaining robust results. This allows the
maximum exploitation of AIA’s fine spatial and temporal resolution for temperature
and emission measure studies.
2016-01-01T00:00:00ZControl of open quantum systems
http://hdl.handle.net/2160/43312
Control of open quantum systems
Arenz, Christian
Known as decoherence, the unavoidable interaction of a quantum system with its
surrounding environment is usually considered to be detrimental for quantum information
processing. In this thesis the coherent, open loop control of such open
systems is studied. Concepts from quantum control theory and the theory of open
quantum system are adopted in order to fight decoherence and implement quantum
gates in a noiseless manner. In particular, Lie algebraic methods and numerical
optimization tools are used to investigate the control properties of a single spin interacting
with a spin environment. We show that, independent of the size of the
environment, every unitary transformation can be implemented on the system spin
through a single control field. We proceed by investigating dynamical decoupling,
a method to suppress the interactions with the environment, for finite- and for infinite
dimensional systems. We prove that every finite dimensional system can be
protected from decoherence, even if the environment is infinite dimensional, whereas
for noise described by a Lindblad master equation dynamical decoupling will never
succeed. This will lead to a new method to distinguish decoherence from intrinsic
noise terms. We further prove that not every infinite dimensional system can be
protected from decoherence through dynamical decoupling. Afterwards we investigate
dynamical decoupling of systems that are described by quadratic Hamiltonians,
showing that such interactions can always be suppressed with two simple operations.
In the last part we investigate the coherent control of a Lindblad master equation.
We show that a strong noise process exhibiting a decoherence free subspace can
substantially increase the number of unitary operations that can be implemented,
allowing us to fully control parts of the system. Afterwards we develop a scheme to
make Hamiltonians and Lindbladians commutative by adding an auxiliary system.
The old, possibly non-commutative dynamics, is recovered through a non-selective
measurement.
2016-01-01T00:00:00ZA computational study of some rheological influences on the "splashing experiment"
http://hdl.handle.net/2160/43292
A computational study of some rheological influences on the "splashing experiment"
Tome, M. F.; McKee, S.; Walters, Ken
In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N(1) and N(2), especially N(1), the extensional viscosity, and the dynamic moduli G' and G ''. In this paper, we shall confine attention to 'constant-viscosity' Boger fluids, and, accordingly, we shall limit attention to N(1), eta(E), G' and G ''. We shall concentrate on the "splashing" problem (particularly that which arises when a liquid drop falls onto the free surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. We show that high eta(E) can certainly reduce the height of the so-called Worthington jet, thus confirming earlier suggestions, but other rheometrical influences (steady and transient) can also have a role to play and the overall picture may not be as clear as it was once envisaged. We argue that this is due in the main to the fact that splashing is a manifestly unsteady flow. To confirm this proposition, we obtain numerical simulations for the linear Jeffreys model. (C) 2010 Elsevier B.V. All rights reserved.
2010-10-01T00:00:00Z