Show simple item record Meng, Qinggang Lee, Mark 2006-04-06T13:53:23Z 2006-04-06T13:53:23Z 2004
dc.identifier.citation Meng , Q & Lee , M 2004 , ' Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics ' Paper presented at NeuroBotics Workshop , Ulm , Germany , 20/09/2004 - 20/09/2004 , . en
dc.identifier.citation conference en
dc.identifier.other PURE: 67478
dc.identifier.other PURE UUID: ca1ed748-53b4-4643-bf45-9b45c1f25164
dc.identifier.other dspace: 2160/101
dc.description Q. Meng and M. H. Lee, Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics, AI-Workshop on NeuroBotics, University of Ulm, Germany. September 2004. en
dc.description.abstract Biologically inspired robotics offers the promise of future autonomous devices that can perform significant tasks while coping with noisy, real-world environments. In order to survive for long periods we believe a developmental approach to learning is required and we are investigating the design of such systems inspired by results from developmental psychology. Developmental learning takes place in the context of an epigenetic framework that allows environmental and internal constraints to shape increasing competence and the gradual consolidation of control, coordination and skill. In this paper we describe the use of novelty and habituation as the motivation mechanism for a sensory-motor learning process. In our system, a biologically plausible habituation model is utilized and the effect of parameters such as habituation rate and recovery rate on the learning/development process is studied. We concentrate on the very early stages of development in this work. The learning process is based on a topological mapping structure which has several attractive features for sensory-motor learning. The motivation model was implemented and tested through a series of experiments on a working robot system with proprioceptive and contact sensing. Stimulated by novelty, the robot explored its egocentric space and learned to coordinate motor acts with sensory feedback. Experimental results and analysis are given for different parameter configurations, proprioceptive encoding schemes, and stimulus habituation schedules. en
dc.language.iso eng
dc.rights en
dc.title Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontoconference/paper en
dc.contributor.institution Department of Computer Science en
dc.contributor.institution Intelligent Robotics Group en
dc.description.status Peer reviewed en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search