Optimal Quantum Feedback Control for Canonical Observables

H...............H

Show simple item record

dc.contributor.author Gough, John E.
dc.date.accessioned 2008-11-12T18:39:42Z
dc.date.available 2008-11-12T18:39:42Z
dc.date.issued 2008-11-12
dc.identifier.citation Gough , J E 2008 , ' Optimal Quantum Feedback Control for Canonical Observables ' pp. 262-279 . en
dc.identifier.other PURE: 94708
dc.identifier.other dspace: 2160/1094
dc.identifier.uri http://hdl.handle.net/2160/1094
dc.description John Gough, in Quantum Stochastics and Information: Statistics, Filtering & Control, pp. 262-279 Eds. M. Guta and V.P. Belavkin, World Scientific 2008 ISBN#: 9789812832955 en
dc.description.abstract We consider the problem of optimal feedback control of a quantum system with linear dynamics undergoing continual non-demolition measurement of position and/or momentum, or both together. Specically, we show that a stable domain of solutions for the ltered state of the system will be given by a class of randomized squeezed states and we exercise the control problem amonst these states. Bellman's principle is then applied directly to optimal feedback control of such dynamical systems and the Hamilton Jacobi Bellman equation for the minimum cost is derived. The situation of quadratic performance criteria is treated as the important special case and solved exactly for the class of relaxed states. en
dc.format.extent 18 en
dc.language.iso eng
dc.relation.ispartof en
dc.title Optimal Quantum Feedback Control for Canonical Observables en
dc.type Text en
dc.type.publicationtype Conference paper en
dc.contributor.institution Institute of Mathematics & Physics (ADT) en
dc.description.status Non peer reviewed en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

My Account