### Citation:

Gough , J E 2004 , ' Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions ' Communications in Mathematical Physics , vol 254 , no. 2 , pp. 498-512 . DOI: 10.1007/s00220-004-1163-y

### Abstract:

We consider a Markovian approximation, of weak coupling type, to an open system perturbation involving emission, absorption and scattering by reservoir quanta. The result is the general form for a quantum stochastic flow driven by creation, annihilation and gauge processes. A weak matrix limit is established for the convergence of the interaction-picture unitary to a unitary, adapted quantum stochastic process and of the Heisenberg dynamics to the corresponding quantum stochastic flow: the convergence strategy is similar to the quantum functional central limits introduced by Accardi, Frigerio and Lu [1]. The principal terms in the Dyson series expansions are identified and re-summed after the limit to obtain explicit quantum stochastic differential equations with renormalized coefficients. An extension of the Pulé inequalities [2] allows uniform estimates for the Dyson series expansion for both the unitary operator and the Heisenberg evolution to be obtained.

### Description:

Gough, John, (2004) 'Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions', Communications in Mathematical Physics 254 pp.498-512 RAE2008