Scattering poles near the real axis for two strictly convex obstacles

H...............H

Show simple item record

dc.contributor.author Iantchenko, A.
dc.date.accessioned 2008-12-05T10:51:07Z
dc.date.available 2008-12-05T10:51:07Z
dc.date.issued 2007-06
dc.identifier.citation Iantchenko , A 2007 , ' Scattering poles near the real axis for two strictly convex obstacles ' Annales Henri Poincaré , vol 8 , no. 3 , pp. 513-568 . en
dc.identifier.issn 1424-0637
dc.identifier.other PURE: 88681
dc.identifier.other dspace: 2160/1405
dc.identifier.uri http://hdl.handle.net/2160/1405
dc.description Iantchenko, A., (2007) 'Scattering poles near the real axis for two strictly convex obstacles', Annales of the Institute Henri Poincaré 8 pp.513-568 RAE2008 en
dc.description.abstract To study the location of poles for the acoustic scattering matrix for two strictly convex obstacles with smooth boundaries, one uses an approximation of the quantized billiard operator M along the trapped ray between the two obstacles. Using this method Gérard (cf. [7]) obtained complete asymptotic expansions for the poles in a strip Im z ≤ c as Re z tends to infinity. He established the existence of parallel rows of poles close to Assuming that the boundaries are analytic and the eigenvalues of Poincaré map are non-resonant we use the Birkhoff normal form for M to improve his result and to get the complete asymptotic expansions for the poles in any logarithmic neighborhood of real axis. en
dc.format.extent 56 en
dc.language.iso eng
dc.relation.ispartof Annales Henri Poincaré en
dc.title Scattering poles near the real axis for two strictly convex obstacles en
dc.type Text en
dc.type.publicationtype Article (Journal) en
dc.identifier.doi http://dx.doi.org/10.1007/s00023-006-0315-3
dc.contributor.institution Institute of Mathematics & Physics (ADT) en
dc.contributor.institution Mathematical Modelling of Structures, Solids and Fluids en
dc.description.status Peer reviewed en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

My Account