dc.contributor.author 
Hieber, Matthias 

dc.contributor.author 
Wood, Ian 

dc.date.accessioned 
20081205T11:17:51Z 

dc.date.available 
20081205T11:17:51Z 

dc.date.issued 
20070701 

dc.identifier.citation 
Hieber , M & Wood , I 2007 , ' The Dirichlet problem in convex bounded domains for operators with L8coefficients ' Differential and Integral Equations , vol 20 , no. 7 , pp. 721734 . 
en 
dc.identifier.issn 
08934983 

dc.identifier.other 
PURE: 88760 

dc.identifier.other 
dspace: 2160/1413 

dc.identifier.uri 
http://hdl.handle.net/2160/1413 

dc.identifier.uri 
http://projecteuclid.org/euclid.die/1356039406 
en 
dc.description 
Wood, Ian; Hieber, M., (2007) 'The Dirichlet problem in convex bounded domains for operators with L8coefficients', Differential and Integral Equations 20 pp.721734 RAE2008 
en 
dc.description.abstract 
Consider the Dirichlet problem for elliptic and parabolic equations in nondivergence form with variable coefficients in convex bounded domains of Rn. We prove solvability of the elliptic problem and maximal LqLpestimates for the solution of the parabolic problem provided the coefficients aij∈L∞ satisfy a Cordes condition and p∈(1,2] is close to 2. This implies that in two dimensions, i.e., n=2, the elliptic Dirichlet problem is always solvable if the associated operator is uniformly strongly elliptic, and p∈(1,2] is close to 2, for maximal LqLpregularity in the parabolic case an additional assumption on the growth of the coefficients is needed. 
en 
dc.format.extent 
14 
en 
dc.language.iso 
eng 

dc.relation.ispartof 
Differential and Integral Equations 
en 
dc.title 
The Dirichlet problem in convex bounded domains for operators with L8coefficients 
en 
dc.type 
Text 
en 
dc.type.publicationtype 
Article (Journal) 
en 
dc.contributor.institution 
Institute of Mathematics & Physics (ADT) 
en 
dc.contributor.institution 
Mathematics and Physics 
en 
dc.description.status 
Peer reviewed 
en 