Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules

H...............H

Show simple item record

dc.contributor.author Gohm, Rolf
dc.contributor.author Skeide, M.
dc.date.accessioned 2008-12-08T09:29:24Z
dc.date.available 2008-12-08T09:29:24Z
dc.date.issued 2005-06-02
dc.identifier.citation Gohm , R & Skeide , M 2005 , ' Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules ' Infinite Dimensional Analysis, Quantum Probability and Related Topics , vol 8 , no. 2 , pp. 291-305 . , 10.1142/S0219025705001986 en
dc.identifier.issn 0219-0257
dc.identifier.other PURE: 88817
dc.identifier.other dspace: 2160/1421
dc.identifier.uri http://hdl.handle.net/2160/1421
dc.description Gohm, Rolf; Skeide, M., (2005) 'Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules', Infinite Dimensional Analysis, Quantum Probability and Related Topics 8(2) pp.291-305 RAE2008 en
dc.description.abstract We apply Hilbert module methods to show that normal completely positive maps admit weak tensor dilations. Appealing to a duality between weak tensor dilations and extensions of CP-maps, we get an existence proof for certain extensions. We point out that this duality is part of a far reaching duality between a von Neumann bimodule and its commutant in which other dualities, known and new, also find their natural common place. en
dc.format.extent 15 en
dc.language.iso eng
dc.relation.ispartof Infinite Dimensional Analysis, Quantum Probability and Related Topics en
dc.title Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules en
dc.type Text en
dc.type.publicationtype Article (Journal) en
dc.identifier.doi http://dx.doi.org/10.1142/S0219025705001986
dc.contributor.institution Institute of Mathematics & Physics (ADT) en
dc.contributor.institution Mathematics and Physics en
dc.description.status Peer reviewed en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

My Account