On the K-theory of higher rank graph C*-algebras


Show simple item record

dc.contributor.author Evans, Gwion D.
dc.date.accessioned 2008-12-08T10:12:17Z
dc.date.available 2008-12-08T10:12:17Z
dc.date.issued 2008-12-08
dc.identifier.citation Evans , G D 2008 , On the K-theory of higher rank graph C*-algebras . Unknown Publisher . en
dc.identifier.other PURE: 97707
dc.identifier.other dspace: 2160/1428
dc.identifier.uri http://hdl.handle.net/2160/1428
dc.identifier.uri http://nyjm.albany.edu/j/2008/14-1.pdf en
dc.description Evans, Gwion D., 'On the K-theory of higher rank graph C*-algebras', New York Journal of Mathematics, 14 (2008), pp. 1-31 en
dc.description.abstract Given a row-finite $k$-graph $\Lambda$ with no sources we investigate the $K$-theory of the higher rank graph $C^*$-algebra, $C^*(\Lambda)$. When $k=2$ we are able to give explicit formulae to calculate the $K$-groups of $C^*(\Lambda)$. The $K$-groups of $C^*(\Lambda)$ for $k>2$ can be calculated under certain circumstances and we consider the case $k=3$. We prove that for arbitrary $k$, the torsion-free rank of $K_0(C^*(\Lambda))$ and $K_1(C^*\Lambda))$ are equal when $C^*(\Lambda)$ is unital, and for $k=2$ we determine the position of the class of the unit of $C^*(\Lambda)$ in $K_0(C^*(\Lambda))$. en
dc.format.extent 31 en
dc.language.iso eng
dc.publisher Unknown Publisher
dc.title On the K-theory of higher rank graph C*-algebras en
dc.type Text en
dc.type.publicationtype Report (commissioned) en
dc.contributor.institution Aberystwyth University en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search


My Account