Show simple item record

dc.contributor.author Evans, Gwion D.
dc.date.accessioned 2008-12-08T10:12:17Z
dc.date.available 2008-12-08T10:12:17Z
dc.date.issued 2008-12-08
dc.identifier.citation Evans , G D 2008 , On the K-theory of higher rank graph C*-algebras . Unknown Publisher . en
dc.identifier.other PURE: 97707
dc.identifier.other dspace: 2160/1428
dc.identifier.uri http://hdl.handle.net/2160/1428
dc.identifier.uri http://nyjm.albany.edu/j/2008/14-1.pdf en
dc.description Evans, Gwion D., 'On the K-theory of higher rank graph C*-algebras', New York Journal of Mathematics, 14 (2008), pp. 1-31 en
dc.description.abstract Given a row-finite $k$-graph $\Lambda$ with no sources we investigate the $K$-theory of the higher rank graph $C^*$-algebra, $C^*(\Lambda)$. When $k=2$ we are able to give explicit formulae to calculate the $K$-groups of $C^*(\Lambda)$. The $K$-groups of $C^*(\Lambda)$ for $k>2$ can be calculated under certain circumstances and we consider the case $k=3$. We prove that for arbitrary $k$, the torsion-free rank of $K_0(C^*(\Lambda))$ and $K_1(C^*\Lambda))$ are equal when $C^*(\Lambda)$ is unital, and for $k=2$ we determine the position of the class of the unit of $C^*(\Lambda)$ in $K_0(C^*(\Lambda))$. en
dc.format.extent 31 en
dc.language.iso eng
dc.publisher Unknown Publisher
dc.title On the K-theory of higher rank graph C*-algebras en
dc.type Text en
dc.type.publicationtype Report (commissioned) en
dc.contributor.institution Aberystwyth University en


Files in this item

Aside from theses and in the absence of a specific licence document on an item page, all works in Cadair are accessible under the CC BY-NC-ND Licence. AU theses and dissertations held on Cadair are made available for the purposes of private study and non-commercial research and brief extracts may be reproduced under fair dealing for the purpose of criticism or review. If you have any queries in relation to the re-use of material on Cadair, contact is@aber.ac.uk.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

Statistics