Show simple item record Li, Bo Meng, Qinggang Holstein, Horst 2008-12-17T10:10:47Z 2008-12-17T10:10:47Z 2004-06-01
dc.identifier.citation Li , B , Meng , Q & Holstein , H 2004 , ' Articulated Pose Identification with Sparse Point Features ' IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , vol 34 , no. 3 , pp. 1412-1422 . DOI: 10.1109/TSMCB.2004.825914 en
dc.identifier.issn 1083-4419
dc.identifier.other PURE: 97077
dc.identifier.other PURE UUID: ee9f59ef-959d-4d2a-974c-751746885291
dc.identifier.other dspace: 2160/1738
dc.identifier.other DSpace_20121128.csv: row: 1445
dc.identifier.other crossref: 10.1109/TSMCB.2004.825914
dc.identifier.other Scopus: 2942522635
dc.description Holstein, Horst, Li, B., Meng, Q., (2004) 'Articulated Pose Identification with Sparse Point Features', IEEE Transactions on Systems, Man and Cybernetics, Part B 34(3) pp.1412-1422 RAE2008 en
dc.description.abstract We propose a general algorithm for identifying an arbitrary pose of an articulated subject with sparse point features. The algorithm aims to identify a one-to-one correspondence between a model point-set and an observed point-set taken from freeform motion of the articulated subject. We avoid common assumptions such as pose similarity or small motions with respect to the model, and assume no prior knowledge from which to infer an initial or partial correspondence between the two point-sets. The algorithm integrates local segment-based correspondences under a set of affine transformations, and a global hierarchical search strategy. Experimental results, based on synthetic pose and real-world human motion data demonstrate the ability of the algorithm to perform the identification task. Reliability is increasingly compromised with increasing data noise and segmental distortion, but the algorithm can tolerate moderate levels. This work contributes to establishing a crucial self-initializing identification in model-based point-feature tracking for articulated motion. en
dc.format.extent 11 en
dc.language.iso eng
dc.relation.ispartof IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) en
dc.rights en
dc.title Articulated Pose Identification with Sparse Point Features en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article en
dc.contributor.institution Intelligent Robotics Group en
dc.contributor.institution Department of Physics en
dc.contributor.institution Department of Computer Science en
dc.description.status Peer reviewed en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search