Show simple item record Meng, Q. Li, Baihua Holstein, Horst 2008-12-17T10:27:12Z 2008-12-17T10:27:12Z 2005-12
dc.identifier.citation Meng , Q , Li , B & Holstein , H 2005 , ' Similarity K-d tree method for sparse point pattern matching with underlying non-rigidity ' Pattern Recognition , vol 38 , no. 12 , pp. 2391-2399 . DOI: 10.1016/j.patcog.2005.03.004 en
dc.identifier.issn 0031-3203
dc.identifier.other PURE: 97130
dc.identifier.other PURE UUID: fb45ead5-a78c-41fe-930d-ba8fdaa3b052
dc.identifier.other dspace: 2160/1740
dc.description Holstein, Horst, Li, B., Meng, Q., (2005) 'Similarity K-d tree method for sparse point pattern matching with underlying non-rigidity', Pattern Recognition 38(12) pp.2391-2399 RAE2008 en
dc.description.abstract We propose a method for matching non-affinely related sparse model and data point-sets of identical cardinality, similar spatial distribution and orientation. To establish a one-to-one match, we introduce a new similarity K-dimensional tree. We construct the tree for the model set using spatial sparsity priority order. A corresponding tree for the data set is then constructed, following the sparsity information embedded in the model tree. A matching sequence between the two point sets is generated by traversing the identically structured trees. Experiments on synthetic and real data confirm that this method is applicable to robust spatial matching of sparse point-sets under moderate non-rigid distortion and arbitrary scaling, thus contributing to non-rigid point-pattern matching. en
dc.format.extent 9 en
dc.language.iso eng
dc.relation.ispartof Pattern Recognition en
dc.rights en
dc.title Similarity K-d tree method for sparse point pattern matching with underlying non-rigidity en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article en
dc.contributor.institution Department of Computer Science en
dc.contributor.institution Intelligent Robotics Group en
dc.description.status Peer reviewed en

Files in this item

Aside from theses and in the absence of a specific licence document on an item page, all works in Cadair are accessible under the CC BY-NC-ND Licence. AU theses and dissertations held on Cadair are made available for the purposes of private study and non-commercial research and brief extracts may be reproduced under fair dealing for the purpose of criticism or review. If you have any queries in relation to the re-use of material on Cadair, contact

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search