Show simple item record Holstein, Horst 2008-12-17T10:54:11Z 2008-12-17T10:54:11Z 2002
dc.identifier.citation Holstein , H 2002 , ' Gravimagnetic similarity in anomaly formulas for uniform polyhedra ' Geophysics , vol 67 , no. 4 , pp. 1126-1133 . DOI: 10.1190/1.1500373 en
dc.identifier.issn 0016-8033
dc.identifier.other PURE: 97229
dc.identifier.other PURE UUID: 97b42086-a55f-435d-8a65-b59a7fe7db56
dc.identifier.other dspace: 2160/1744
dc.identifier.other DSpace_20121128.csv: row: 1451
dc.identifier.other Scopus: 0036638230
dc.description Holstein, Horst, (2002) 'Gravimagnetic similarity in anomaly formulas for uniform polyhedra', Geophysics 67(4) pp.1126-1133 RAE2008 en
dc.description.abstract Gravitational and magnetic anomalies of an arbitrary target body are linked through Poisson's differential relation. For a uniform polyhedral target, Poisson's relation reduces to an algebraic link between gravity and magnetic anomaly formulas.The derivation is given in tensor form. It identifies for each target facet edge a vector function, in terms of which the gravitational and magnetic potential and field anomaly formulas are similarly expressed as appropriately weighted linear combinations. This similarity unifies the theory of uniform polyhedral anomalies. It benefits analysis and construction of software that naturally embraces all anomalies in a single code.The analysis is exemplified by a discussion of singularities and by the adaptation of three gravity-field algorithms to the remaining gravitational and magnetic cases, while retaining the respective computational advantages of the former gravity-field algorithms. en
dc.format.extent 8 en
dc.language.iso eng
dc.relation.ispartof Geophysics en
dc.rights en
dc.title Gravimagnetic similarity in anomaly formulas for uniform polyhedra en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article en
dc.contributor.institution Department of Computer Science en
dc.contributor.institution Intelligent Robotics Group en
dc.description.status Peer reviewed en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search