Show simple item record Gough, John E. Sobolev, Andrei 2009-08-04T18:13:57Z 2009-08-04T18:13:57Z 2004-09
dc.identifier.citation Gough , J E & Sobolev , A 2004 , ' Stochastic Schrodinger equations as limit of discrete ' Open Systems and Information Dynamics , vol 11 , no. 3 , pp. 235-255 . DOI: 10.1023/B:OPSY.0000047568.89682.10 en
dc.identifier.issn 1573-1324
dc.identifier.other PURE: 114507
dc.identifier.other PURE UUID: 8990bc29-3bdf-46c8-b03e-ef3e022d10a1
dc.identifier.other dspace: 2160/2755
dc.identifier.other DSpace_20121128.csv: row: 2141
dc.identifier.other Scopus: 8644231753
dc.description Open Systems and Information Dynamics, Volume 11, Number 3, 2004 , pp. 235-255(21) DOI: 10.1023/B:OPSY.0000047568.89682.10 en
dc.description.abstract We consider an open model possessing a Markovian quantum stochastic limit and derive the limit stochastic Schrodinger equations for the wave function conditioned on indirect observations using only the von Neumann projection postulate. We show that the di ffusion (Gaussian) situation is universal as a result of the central limit theorem, with the quantum jump (Poissonian) situation being an exceptional case. It is shown that, starting from the correponding limiting open systems dynamics, the theory of quantum ltering leads to the same equations, therefore establishing consistency of the quantum stochastic approach for limiting Markovian models. en
dc.format.extent 21 en
dc.language.iso eng
dc.relation.ispartof Open Systems and Information Dynamics en
dc.rights en
dc.title Stochastic Schrodinger equations as limit of discrete en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article en
dc.contributor.institution Department of Physics en
dc.contributor.institution Mathematics and Physics en
dc.description.status Peer reviewed en

Files in this item

Aside from theses and in the absence of a specific licence document on an item page, all works in Cadair are accessible under the CC BY-NC-ND Licence. AU theses and dissertations held on Cadair are made available for the purposes of private study and non-commercial research and brief extracts may be reproduced under fair dealing for the purpose of criticism or review. If you have any queries in relation to the re-use of material on Cadair, contact

This item appears in the following Collection(s)

Show simple item record

Search Cadair

Advanced Search