Show simple item record

dc.contributor.author Sanderson, Ruth
dc.contributor.author Dhanoa, M. S.
dc.contributor.author Kim, Eun J.
dc.contributor.author Dewhurst, Richard J.
dc.date.accessioned 2009-09-23T11:09:30Z
dc.date.available 2009-09-23T11:09:30Z
dc.date.issued 2005
dc.identifier.citation Sanderson , R , Dhanoa , M S , Kim , E J & Dewhurst , R J 2005 , ' Fatty acid profiles associated with microbial colonization of freshly-ingested grass and rumen biohydrogenation ' Journal of Dairy Science , pp. 3220-3230 . en
dc.identifier.other PURE: 118327
dc.identifier.other dspace: 2160/3054
dc.identifier.uri http://hdl.handle.net/2160/3054
dc.identifier.uri http://jds.fass.org/cgi/reprint/88/9/3220.pdf en
dc.description Kim, E. J., Sanderson, R., Dhanoa, M. S., Dewhurst, R. J. (2005). Fatty acid profiles associated with microbial colonization of freshly-ingested grass and rumen biohydrogenation. Journal of Dairy Science, 88, (9), pp. 3220-3230 Key words: rumen, odd-chain fatty acid, microbial colonization, polyester bag technique Sponsorship: DEFRA en
dc.description.abstract Two in situ studies were conducted to examine the use of odd-chain fatty acid profiles to study microbial colonization of freshly ingested herbage in the rumen as well as fatty acid biohydrogenation. In the first study, fresh perennial ryegrass was subjected to a range of sample preparation methods before incubation in the rumen for 2 or 7 h. In the second study, fresh perennial ryegrass was chopped into 1-cm lengths and incubated in polyester bags in the rumen for 2, 8, and 24 h. After removal of bags from the rumen, 4 different washing methods, ranging from manual squeezing to machine washing, were applied. Fatty acids were extracted from washed residues and determined, as methyl esters, by gas chromatography. The main oddchain fatty acids (with the exception of anteiso C15:0) were not found in fresh grass and were useful markers of the effects of incubation time, sample preparation method, and washing method on microbial colonization/ contamination. The concentration of these and other odd-chain fatty acids increased with incubation time in both studies. The results indicate rapid and continued microbial colonization of freshly ingested forages, although patterns of odd-chain fatty acids did not reveal any further information about the types of bacteria-colonizing herbage. Principal component, biplot analysis provided a useful overall description of the processes of microbial colonization and degradation of plant fatty acids on fresh herbage incubated in the rumen. Bolus formation during mastication and ingestion results in extensive damage to herbage; none of the techniques (cutting, crushing, and drying/grinding) investigated in this work was able to replicate the effects of bolus formation in the animal. The study provided further evidence of loss of unfermented feed particles through polyester bag pores, especially when feeds are dried and ground. Biohydrogenation of the polyunsaturated fatty acids of fresh herbage was used principally by solid-associated bacteria to enable them to take up high levels of trans-11 C18:1 and C18:0 fatty acids. Although trans-11 C18:1 was strongly associated with bacterial markers (odd- and branched-chain fatty acids), its precursor (cis-9, trans-11 C18:2) was not associated with bacterial variation, suggesting that its production in the rumen under these conditions was mainly extracellular. en
dc.format.extent 11 en
dc.language.iso eng
dc.relation.ispartof Journal of Dairy Science en
dc.title Fatty acid profiles associated with microbial colonization of freshly-ingested grass and rumen biohydrogenation en
dc.type Text en
dc.type.publicationtype Article (Journal) en
dc.contributor.institution Institute of Biological, Environmental and Rural Sciences en
dc.description.status Peer reviewed en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

Statistics