Show simple item record

dc.contributor.author Douglas, Robert J.
dc.date.accessioned 2007-12-03T14:39:16Z
dc.date.available 2007-12-03T14:39:16Z
dc.date.issued 2007
dc.identifier.citation Douglas , R J 2007 , ' Non-existence of polar factorisations and polar inclusion of a vector-valued mapping ' International Journal of Pure and Applied Mathematics , vol 41 , no. 3 . en
dc.identifier.issn 1314-3395
dc.identifier.other PURE: 73646
dc.identifier.other PURE UUID: e7012a83-4c32-452c-8adf-3fb515a257bf
dc.identifier.other dspace: 2160/379
dc.identifier.uri http://hdl.handle.net/2160/379
dc.description R.J. DOUGLAS, Non-existence of polar factorisations and polar inclusion of a vector-valued mapping. Intern. Jour. Of Pure and Appl. Math., (IJPAM) 41, no. 3 (2007). en
dc.description.abstract This paper proves some results concerning the polar factorisation of an integrable vector-valued function $u$ into the composition $u = u^{\#} \circ s$, where $u^{\#} = \nabla \psi$ almost everywhere for some convex function $\psi$, and $s$ is a measure-preserving mapping. Not every integrable function has a polar factorisation; we extend the class of counterexamples. We introduce a generalisation: $u$ has a polar inclusion if $u(x) \in \partial \psi (y)$ for almost every pair $(x,y)$ with respect to a measure-preserving plan. Given a regularity assumption, we show that such measure-preserving plans are exactly the minimisers of a Monge-Kantorovich optimisation problem. en
dc.language.iso eng
dc.relation.ispartof International Journal of Pure and Applied Mathematics en
dc.rights en
dc.title Non-existence of polar factorisations and polar inclusion of a vector-valued mapping en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article en
dc.contributor.institution Department of Physics en
dc.contributor.institution Mathematical Modelling of Structures, Solids and Fluids en
dc.description.status Peer reviewed en


Files in this item

Aside from theses and in the absence of a specific licence document on an item page, all works in Cadair are accessible under the CC BY-NC-ND Licence. AU theses and dissertations held on Cadair are made available for the purposes of private study and non-commercial research and brief extracts may be reproduced under fair dealing for the purpose of criticism or review. If you have any queries in relation to the re-use of material on Cadair, contact is@aber.ac.uk.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

Statistics