Squeezing Components in Linear Quantum Feedback Networks

H...............H

Show simple item record

dc.contributor.author Gough, John Edward
dc.contributor.author Nurdin, Hendra
dc.contributor.author James, Matthew R.
dc.date.accessioned 2010-03-16T15:06:32Z
dc.date.available 2010-03-16T15:06:32Z
dc.date.issued 2010-02-03
dc.identifier.citation Gough , J E , Nurdin , H & James , M R 2010 , ' Squeezing Components in Linear Quantum Feedback Networks ' Physical Review A , vol 81 , no. 2 , 023804 . , 10.1103/PhysRevA.81.023804 en
dc.identifier.issn 1050-2947
dc.identifier.other PURE: 142214
dc.identifier.other dspace: 2160/4442
dc.identifier.uri http://hdl.handle.net/2160/4442
dc.identifier.uri http://link.aps.org/doi/10.1103/PhysRevA.81.023804 en
dc.description Phys. Rev. A 81, 023804 (2010) DOI: 10.1103/PhysRevA.81.023804 Sponsorship: EPSRC en
dc.description.abstract The aim of this article is to extend linear quantum dynamical network theory to include static Bogoliubov components (such as squeezers). Within this integrated quantum network theory, we provide general methods for cascade or series connections, as well as feedback interconnections using linear fractional transformations. In addition, we define input-output maps and transfer functions for representing components and describing convergence. We also discuss the underlying group structure in this theory arising from series interconnection. Several examples illustrate the theory. en
dc.language.iso eng
dc.relation.ispartof Physical Review A en
dc.title Squeezing Components in Linear Quantum Feedback Networks en
dc.type Text en
dc.type.publicationtype Article (Journal) en
dc.identifier.doi http://dx.doi.org/10.1103/PhysRevA.81.023804
dc.contributor.institution Quantum Systems, Information and Control en
dc.contributor.institution Institute of Mathematics & Physics (ADT) en
dc.description.status Peer reviewed en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

My Account