Automated quality assurance applied to mammographic imaging

H...............H

Show simple item record

dc.contributor.author Holubinka, M.
dc.contributor.author Davis, A.
dc.contributor.author Zwiggelaar, Reyer
dc.contributor.author Marti, R.
dc.contributor.author Blot, L.
dc.date.accessioned 2008-03-04T16:14:36Z
dc.date.available 2008-03-04T16:14:36Z
dc.date.issued 2002
dc.identifier.citation Holubinka , M , Davis , A , Zwiggelaar , R , Marti , R & Blot , L 2002 , ' Automated quality assurance applied to mammographic imaging ' EURASIP Journal of Applied Signal Processing , vol 7 , pp. 736-745 . en
dc.identifier.issn 1687-6180
dc.identifier.other PURE: 75958
dc.identifier.other dspace: 2160/527
dc.identifier.uri http://hdl.handle.net/2160/527
dc.identifier.uri http://www.hindawi.com/GetArticle.aspx?doi=10.1155/S1110865702203029 en
dc.description L. Blot, A. Davis, M. Holubinka, R. Marti and R. Zwiggelaar, 'Automated quality assurance applied to mammographic imaging', EURASIP Journal of Applied Signal Processing 2002 (7), 736-745 (2002) en
dc.description.abstract Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM) test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented. en
dc.format.extent 10 en
dc.language.iso eng
dc.relation.ispartof EURASIP Journal of Applied Signal Processing en
dc.title Automated quality assurance applied to mammographic imaging en
dc.type Text en
dc.type.publicationtype Article (Journal) en
dc.identifier.doi http://dx.doi.org/10.1155/S1110865702203029
dc.contributor.institution Department of Computer Science en
dc.contributor.institution Vision, Graphics and Visualisation Group en
dc.description.status Peer reviewed en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Cadair


Advanced Search

Browse

My Account