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Dept. of Computer Science
Aberystwyth University

Aberystwyth, Ceredigion, Wales. UK
Email: {yyq09, cns, qqs, ncm}@aber.ac.uk

Wei Wu
School of Mathematical Sciences
Dalian University ofTechnology

Dalian, 116024, China
Email: wuweiw@dlut.edu.cn

Abstract—Fuzzy-rough sets play an important role in dealing
with imprecision and uncertainty for discrete and real-valued or
noisy data. However, there are some problems associated with the
approach from both theoretical and practical viewpoints. These
problems have motivated the hybridisation of fuzzy-rough sets
with kernel methods. Existing work which hybridises fuzzy-rough
sets and kernel methods employs a constraint that enforces the
transitivity of the fuzzy T -norm operation. In this paper, such
a constraint is relaxed and a new kernel-based fuzzy-rough set
approach is introduced. Based on this, novel kernel-based fuzzy-
rough nearest-neighbour algorithms are proposed. The workis
supported by experimental evaluation, which shows that thenew
kernel-based methods offer improvements over the existingfuzzy-
rough nearest neighbour classifiers. The abstract goes here.
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I. I NTRODUCTION

Fuzzy-rough set theory [1] is a hybridisation of rough sets
[2] and fuzzy sets [3], which is capable of dealing with
imprecision and uncertainty in data. As a hybridisation of
fuzzy set theory and rough sets, fuzzy-rough sets not only
inherit the domain independence of rough sets, but also address
the inability of rough sets in handling real-valued data. That
is, fuzzy-rough sets provide a means to deal with discrete
or real-valued noisy data (or a mixture of both) without the
need for user-supplied thresholding or domain information. As
such, this technique can be applied to regression as well as
classification tasks. The only additional information required
is in the form of fuzzy partitions for each feature which can
be automatically derived from the data [4].

Kernel methods [5] have the ability to deal with non-
linear models by mapping a given problem from the (low
dimensional) input space onto a new (higher-dimensional)
space via a non-linear transformation. The resulting structure
of the classification task is then linearly separable. From
another perspective, the kernel defines a similarity measure
between two data objects and thus allows the utilisation of
prior knowledge of the problem domain. More importantly,
the kernel provides all of the information about the relative
positions of the inputs in the feature space so that the associ-
ated learning algorithm is based only on the kernel function.
Classification can be carried out without explicit use of the

feature space.
The initial work on hybridising fuzzy-rough sets and kernel

methods is presented in [6]. This work exploited the approach
as described in [7], which explored the relationship between
kernels andT -transitivity. In particular, kernel methods are
integrated into fuzzy-rough sets (and more recently gaussian
kernels [8]). In the work of [6], the concept ofkernelised
fuzzy-rough setswas proposed, in which kernel functions are
employed to compute the fuzzy similarity relations between
samples. One of the shortcomings of this approach however, is
the fact that the fuzzy relations are limited only toTcos equiv-
alence relations [7] in an attempt to guaranteeT -transitivity.
However, as argued in [9],T -transitivity does not necessarily
need to be enforced for fuzzy-rough sets [10], as the use of
fuzzy tolerance relations [11] may be sufficient [12].

In this paper, an improved approach to using kernel methods
with fuzzy-rough sets is presented. The reason why the pro-
posed method is termedkernel-based fuzzy-rough setsrather
thankernelised fuzzy-rough sets, is that in such a combination,
kernels are employed as a special means to construct fuzzy
tolerance relations. The framework of fuzzy-rough sets is
preserved, whilst a statistical perspective is used in order to
investigate the properties of kernels which may be suitablefor
integration into fuzzy-rough sets. To demonstrate the utility
of the new kernel-based fuzzy-rough sets approach, a new
form of nearest-neighbour classifier is proposed. This typeof
classifier also employs a vaguely-quantified rough set measure
[13], which is robust in the presence of noisy data.

The remainder of this paper is structured as follows. The
theoretical background is presented in Section 2 with a short
review of existing methods. The proposed kernel-based fuzzy-
rough set approach and the associated nearest neighbour
algorithms are described in Section 3. The new kernel-based
classifier is compared to others, with experimental results
shown in Section 4. Finally, section 5 concludes the paper
with a short discussion of future work.

II. T HEORETICAL BACKGROUND

A. Hybridisation of Rough Sets and Fuzzy Sets

The work on rough set theory (RST)[2] provides a method-
ology that can be employed to extract knowledge from a



domain in a concise way: It is able to minimise information
loss whilst reducing the amount of knowledge involved. Cen-
tral to rough set theory is the concept of indiscernibility.Let
I = (U, A) be an information system, whereU is a non-empty
set of finite objects (the universe) andA is a non-empty finite
set of attributes so thata : U −→ Va for everya ∈ A. Va is
the set of values that attributea may take. For anyP ⊆ A,
there exists an associated equivalence relationIND(P ):

IND(P ) = {(x, y) ∈ U
2 | ∀a ∈ P, a(x) = a(y)}. (1)

The partition generated byIND(p) is denotedU/IND(P )
or abbreviated toU/P and is calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})} (2)

where,

U/IND({a}) = {{x | a(x) = b, x ∈ U} | b ∈ Va} (3)

and,

A ⊗ B = {X ∩ Y | ∀X ∈ A, ∀Y ∈ B, X ∩ Y 6= ∅}. (4)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes fromP . The equivalence classes of the P-
indiscernibility relation are denoted[x]P . Let X ⊆ U. X can
be approximated using only the information contained inP
by constructing the P-lower and P-upper approximations of
X :

PX = {x | [x]P ⊆ X} (5)

PX = {x | [x]P ∩ X 6= ∅}. (6)

The tuple〈PX, PX〉 is called a rough set.
The process described above although useful can only

operate effectively on datasets containing discrete values.
As most datasets contain real-valued attributes, a subjective
judgement or threshold must therefore be employed in order
for RST to operate on such data. The imposition of such a
subjective threshold is however, contrary to the concept of
domain independence of RST. An appropriate way of handling
the problem of real-valued data is the use of fuzzy-rough sets
(FRS) [1]. FRS offers a high degree of flexibility in enabling
the vagueness and imprecision present in real-valued data to
be modelled effectively.

Definitions for the fuzzy lower and upper approximations
can be found in [10], [14], where aT -transitive fuzzy simi-
larity relation is used to approximate a fuzzy conceptX :

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (7)

µRP X(x) = sup
y∈U

T (µRP
(x, y), µX(y)). (8)

Here, I is a fuzzy implicator andT is a T-norm. RP is the
fuzzy similarity relation induced by the subset of featuresP :

µRP
(x, y) = Ta∈P{µRa

(x, y)}. (9)

µRa
(x, y) is the degree to which objectsx andy are similar

for featurea, and may be defined in many ways, for example:

µRa
(x, y) = 1 − |a(x) − a(y)|

|amax − amin|
(10)

µRa
(x, y) = max

(

min

(

(a(y) − (a(x) − σa))

(a(x) − (a(x) − σa))
,

((a(x) + σa) − a(y))

((a(x) + σa) − a(x))

)

, 0

)

(11)

whereσa
2 is the variance of featurea. As these relations do

not necessarily displayT -transitivity, fuzzy transitive closure
must be computed for each feature [9]. In other words,T -
transitivity is not required for fuzzy-rough sets. Instead, fuzzy
tolerance relations [11] can be employed to construct fuzzy-
rough sets [12]. This technique is adopted in this paper also.

Note that formulas (7) and (8) are quite sensitive to noisy
values, just like their crisp counterparts. Thus, the concept of
vaguely-quantified rough set (VQRS) has been introduced in
[13]. Following this approach, given a pair of fuzzy quantifiers
(Qu, Ql), which are an increasing[0, 1] → [0, 1] mapping, the
lower and upper approximation ofX by R are defined by

µQu

RP X(x) = Qu

( |RP (x, y) ∩ X |
|RP (x, y)|

)

= Qu







∑

y∈U

min(µRP
(x, y), µX(y))

∑

y∈U

µRP
(x, y)






(12)

µQl

RP X
(x) = Ql

( |RP (x, y) ∩ X |
|RP (x, y)|

)

= Ql







∑

y∈U

min(µRP
(x, y), µX(y))

∑

y∈U

µRP
(x, y)






, (13)

The fuzzy set intersection is defined by theT-norm min and
the fuzzy set cardinality by the sigma-count operation. As an
important difference to (7) and (8), the VQRS approximations
do not extend the classical rough set approximations, in a sense
that whenX andR are crisp, (12) and (13) may still be fuzzy.

B. Fuzzy-rough Nearest Neighbour Algorithm

A number of techniques have been developed for building
fuzzy-rough nearest neighbour (FRNN) classifiers [15], [16].
Based upon such techniques, an approach which utilises the
fuzzy upper and lower approximations to determine class
membership is proposed in [17].

FRNN works by examining each of the decision classes in
the training data in-turn. It computes the membership of a test
object to the fuzzy lower and upper approximations of each
class. These values are then compared with the highest existing
values:µ1(y) and µ2(y). If the approximation membership



values for the currently considered class are higher, then both
µ1(y) andµ2(y) are assigned these values and the class label
is assigned to this test object. If not, the algorithm continues
to iterate through all remaining decision classes. Classification
accuracy is calculated by comparing the output with the actual
class labels of the test objects.

An extension of FRNN is vaguely quantified rough nearest
neighbour (FRNN-VQRS) [13] which employs (12) and (13),
to determine class membership of test objects. The underlying
learning mechanism is very similar to that of FRNN.

C. Classes of Kernels in Statistics

In a kernel algorithm, a mappingφ from the original space
to a possibly high-dimensional space is employed to change
the distribution of the data from nonlinear problem to linearly
separable problem. By replacing the inner product with an
appropriate kernel function, one can implicitly perform a
nonlinear mapping to a high dimensional feature space without
increasing the number of parameters. Consider the case of
mapping ann-dimensional feature space to anm-dimensional
feature space:

φ : x → φ(x), x ∈ R
n, φ(x) ∈ R

m (14)

A kernel denotes a functionK such that for allx, y ∈ R
n:

K(x, y) = φ(x) · φ(y). (15)

In statistics, symmetric positive definite functions are called
covariances. Hence, kernels are covariance-based in essence.
From a statistics perspective, generally, two important classes
of kernels are: stationary kernels and non-stationary kernels
[18]. The work in this paper focuses on stationary kernels.

Stationary kernelsK(x, y) = KS(x − y) do not depend
on the data object values themselves, but only on the lag
vector separating the two objectsx andy. Isotropic stationary
kernels, which depend only on the norm of the lag vector,
are most commonly used. For isotropic stationary kernels, the
covariance form is:

Kcov(x, y) = KI(‖x − y‖), (16)

and the correlation form is

Kcor(x, y) = KI(‖x − y‖)/KI(0). (17)

A non-stationarykernel K(x, y) is one which depends
explicitly on the two data objectsx andy. Note that a special
kind of non-stationary kernel, called areducible kernel, can
be reduced to a stationary kernel.

III. K ERNEL-BASED FUZZY-ROUGH NEAREST NEIGHBOUR

CLASSIFICATION

A. Kernel-based Fuzzy-rough Sets

The relationship betweenT -transitivity and kernels has been
explored [7]. It has been shown that any kernelK : X×X →
[0, 1], K(x, x) = 1 ∀x ∈ X , is Tcos-transitive, where
Tcos(a, b) = max(ab −

√
1 − a2

√
1 − b2, 0). As an initial

attempt, kernelised fuzzy-rough sets, which combine kernel

methods with concepts from fuzzy-rough set theory, have been
presented in [6], [8]. In this approach, kernelsK(x, y) are
constrained such that they impose: a) reflexivity, b) symmetry,
and c)Tcos-transitivity. Such kernels are employed to calculate
the degree to which objectsx andy are similar for every fea-
ture. The fuzzy lower and upper approximations in kernelised
fuzzy-rough sets are defined by:

µKP X(x) = inf
y∈U

Icos(KP (x, y), µX(y)) (18)

µKP X(x) = sup
y∈U

Tcos(KP (x, y), µX(y)), (19)

where, the implicator

Icos =

{

1, a≤ b

ab +
√

(1 − a2)(1 − b2), a > b
.

However, as shown previously, in fuzzy-rough sets,T -
transitivity is not necessarily displayed, and fuzzy tolerance
relations may be sufficient [12]. Moreover, as (9), the fuzzy
similarity relation induced by the subset of featuresP should
be a combination byT -norm. Specifically, for kernelised
fuzzy-rough sets, it is:

KP (x, y) = Ta∈P{µRa
(x, y)}. (20)

In this case, the choice of a kernel function becomes
limited. This is due to the fact that not many kernel functions
can be denoted by aT -norm-based combination of reflexive
functions. For instance, the Gaussian kernel employed in [8]
and [6] is workable, because for:x = (x1, x2, . . . , xn) ∈ R

n,
y = (y1, y2, . . . , yn) ∈ R

n

exp

(

−‖x − y‖2

θ

)

=

n
∏

i=1

exp

(

− (xi − yi)
2

θ

)

(21)

and because its product is still aT -norm. However, for most
kernels, such as the rational quadratic kernel and the wave
kernel (see below), this property may not hold. In order to
address these problems, kernel-based fuzzy-rough sets are
proposed in this paper.

In geometry, the inner product of two vectors is the projec-
tion of one onto another. Actually, the square of the norm
distance in Hilbert space can be expressed by the inner
product. In this case, the inner product can measure the
similarity between the images of two features by mapping
into a Hilbert space. Therefore, given a non-empty setU and a
kernel functionK being reflexive, (that isK(x, x) = 1), for an
arbitrary fuzzy conceptX , the lower and upper approximations
of a kernel-based fuzzy-rough set can be defined as:

µRK

P
X(x) = inf

y∈U

I(µKP
(x, y), µX(y)) (22)

µ
RK

P
X

(x) = sup
y∈U

T (µKP
(x, y), µX(y)). (23)

It is important to note that the framework of fuzzy-rough
sets remains intact using the definition described in this paper.
In other words, the kernel methods play a special role in
calculating the fuzzy tolerance relations. It is because ofthis



fact that the termkernel-based fuzzy-rough sets(KFRS) is
employed here rather thankernelised fuzzy-rough sets.

As well as fuzzy-rough sets, the corresponding the lower
and upper approximations of the kernel-based vaguely quan-
tified rough set (KVQRS) can be also be defined:

µQu

RK

P
X

(x) = Qu

( |RK
P (x, y) ∩ X |
|RK

P (x, y)|

)

= Qu







∑

y∈U

min(µKP
(x, y), µX(y))

∑

y∈U

µKP
(x, y)






(24)

µQl

RK

P
X

(x) = Ql

( |RK
P (x, y) ∩ X |
|RK

P (x, y)|

)

= Ql







∑

y∈U

min(µKP
(x, y), µX(y))

∑

y∈U

µKP
(x, y)






, (25)

where,µKP
(x, y) is induced by the subset of featuresP and

kernel functionK:

µKP
(x, y) = Ta∈P {φ(a(x)) · φ(a(y))}

= Ta∈P {K(a(x), a(y))} = Ta∈P{Ka(x, y)}.
(26)

As established previously, all isotropic stationary kernels
in correlation form (17) are suitable for being integrated
into KFRS. A collection of certain commonly used isotropic
stationary kernels in correlation form are listed as follows:

• Gaussian kernel:K(x, y) = exp
(

− ‖x−y‖2

θ

)

• Exponential kernel:K(x, y) = exp
(

− ‖x−y‖
θ

)

• Rational quadratic kernel:K(x, y) = 1 − ‖x−y‖2

‖x−y‖2+θ

• Wave kernel:K(x, y) = θ
‖x−y‖ sin(‖x−y‖

θ
).

It is worth noting that for specific non-stationary kernels,the
reflexivity holds also. For instance, the non-stationary kernel
[18],

K(x, y) =
‖x‖ + ‖y‖ − ‖x − y‖

2
√

‖x‖‖y‖
, (27)

is reflexive. This kernel is also reducible.

B. Kernel-based Fuzzy-rough Nearest Neighbour Classifica-
tion

The present work initially aims to investigate the combina-
tion of kernel methods with conventional fuzzy-rough nearest
neighbour approaches (FRNN and FRNN-VQRS) [17]. The
resulting combined learning algorithm is outlined in Figure 1.
As with FRNN, the rationale behind this algorithm is that the
the lower and the upper approximations of each decision class
(calculated by means of the nearest neighbours of a test object
y) will provide helpful clues to predict the membership of a
test object to any given class. The complexity of this algorithm
is: O(|C| · 2|U|).

KFRNN(U,C,y )
U, the training set;C, the set of decision classes;
y, the object to be classified.

(1) N ← get Nearest Neighbour(y, k)
(2) µ1(y)← 0, µ2(y)← 0, Class← ∅
(3) ∀X ∈ C
(4) if(µ

RK

P
X

(y) ≥ µ1(y)&&µ
RK

P
X

(y) ≥ µ2(y))

(5) Class← X
(6) µ1(y)← µ

RK

P
X

(y), µ2(y)← µ
RK

P
X

(y)

(7) output Class

Fig. 1. The kernel-based fuzzy-rough nearest neighbour algorithm

The algorithm in Figure 1 can be further adapted to per-
form kernel-based vaguely quantified rough nearest neighbour
(KFRNN-VQRS) classification, by replacing:µRK

P
X(y) and

µ
RK

P
X

(y) with µQu

RK

P
X

(y) andµQl

RK

P
X

(y), respectively.

In statistics, the stationary property is often mathematically
assumed to describe the ability of ensuring that a random
process maintains the same probabilistic characteristicssuch as
mean, variance and autocorrelation. Typically, non-stationary
and bifurcated regimes are always observed in the case of
datasets with class imbalance [19]. Class imbalance occurs
when one or more classes are over or under represented as a
total number of objects of the whole dataset. Thus, for datasets
which suffer from class imbalance, the distribution of and the
similarity between the objects may be non-stationary. From
this point of view, if a dataset is extremely imbalanced, theuse
of non-stationary kernels would be more appropriate. Further
investigation would help to confirm this - see conclusion
section for further discussion.

IV. EXPERIMENTAL RESULTS

This section presents an experimental evaluation of the pro-
posed algorithms (KFRNN-FRS and KFRNN-VQRS) using
two different kernels: 1) an isotropic stationary kernel, and
2) a non-stationary kernel. Nine benchmark datasets obtained
from[20] are employed. These datasets are small-to-medium
in size, containing between 178 and 683 objects with feature
numbers ranging from 6 to 279.

TABLE I
EVALUATION DATASETS

Dataset Objects Attributes
Arrhythmia 452 279

Glass 214 9
Heart 270 13
Liver 345 6
Sonar 208 60

Water 2 390 38
Water 3 390 38
Wine 178 14

Wisconsin 683 9

For the evaluation described here,k is set at an initial
value of 10 for FRNN-VQRS and KFRNN-VQRS. For FRNN



the relation given in equation (10) is used. For the kernel-
based methods, an exponential kernel (used as the isotropic
stationary kernel), and the non-stationary kernel of (27) are
employed. In the FRNN and KFRNN approaches, the Kleene-
DienesT-norm is used to implement the implicator, which
is defined byI(x, y) = max(1 − x, y). The FRNN-VQRS
and KFRNN-VQRS approaches are implemented withQl =
Q(0.1,0.6) and Qu = Q(0.2,1.0), according to the general
formula

Q(α,β)(x) =



















0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β

2

1 − 2(x−β)2

(β−α)2 , α+β
2 ≤ x ≤ β

1, β ≤ x

. (28)

Stratified 10× 10-fold cross-validation (10-FCV) is em-
ployed for result validation. In 10-FCV, the original dataset
is partitioned into 10 subsets. Of these 10 subsets, a single
subset is retained as the testing data for the model, and the
remaining 9 subsets are used for training. The cross-validation
process is then repeated 10 times (the number of folds). The
10 sets of results are then aggregated via averaging to produce
a single model estimation. The advantage of 10-FCV over
random sub-sampling is that all objects are used for both
training and testing, and each object is used for testing only
once per fold. The stratification of the data prior to its division
into folds ensures that each class label (as far as possible)
has equal representation in all folds, thus helping to alleviate
bias/variance problems. In order to investigate the level of ‘fit’
of these models, the root mean squared error (RMSE) measure
is used. The RMSE is the squared root of the variance of the
residuals. It indicates the absolute fit of a model to the data
and how close the observed data objects are to the model
predicted values. Note that, RMSE is an absolute measure.
As the squared root of a variance, RMSE can be viewed
as the standard deviation of the unexplained variance. Lower
values of RMSE indicate better fit. RMSE is a good measure
of how accurately the model predicts the response, and is a
generally accepted criterion for assessing fit, if the purpose of
the resulting model is for prediction. In addition, conventional
classification accuracy is also used to assess the performance
of learnt classifiers.

A. Performance Evaluation

A comparison of the kernel-based and FRFS-based nearest-
neighbour techniques is shown in Tables II and III, where
sKFRNN and nonsKFRNN stand for stationary kernel-based
fuzzy-rough nearest neighbour and non-stationary kernel-
based fuzzy-rough nearest neighbour methods, respectively.
Correspondingly, stationary kernel-based vaguely quantified
rough nearest neighbour and non-stationary kernel-based
vaguely quantified rough nearest neighbour approaches are
denoted by sKFRNN-VQRS and nonsKFRNN-VQRS, respec-
tively.

Note that theWater2andWater3datasets, both suffer from
class imbalance. In particular, the ratios of data between
different classes are: 312 objects to 78 objects for classes1

and 2 forwater2, and 378 objects for class 1 and 12 objects
for class 2 forwater3. It can be seen from the experimen-
tal results that the non-stationary kernel based approaches,
nonsKFRNN and nonsKFRNN-VQRS, consistently achieved
the highest classification accuracy and smallest RMSE over
all other methods for these datasets. However, for the rest
datasets which are not highly imbalanced, the differences
between the performance of two new approaches and existing
techniques are not that significant. In fact, forLiver andGlass,
both of sKFRNN and sKFRNN-VQRS reached the highest
classification accuracy and smallest RMSE values. ForHeart,
Sonar, WineandWisconsin, the competitiveness of the kernel-
based fuzzy-rough nearest neighbour classifiers are obvious.
Putting these results together, it is clear that the presentwork
helps to improve the quality of fuzzy-rough nearest neighbour
classifiers.

B. Statistical Analysis

To further evaluate the kernel-based fuzzy-rough techniques,
a paired t-test with significance level of 0.05 has been carried
out. The baseline references for the tests are the results
obtainable from FRNN and FRNN-VQRS classification, re-
spectively. This is done in order to ensure that the aforemen-
tioned results are not discovered by chance. The statistical
significance results are shown in Table IV and V, where the
symbols ‘v’, ‘*’ and ‘-’ indicate that the results are statistically
better, worse, or have no statical significance.

The results once again demonstrate that the kernel-based
approaches achieve best performances overall forWater2,
Water3, Heart and Arrythmia, etc. In particular, compared to
FRNN, the non-stationary kernel-based methods are shown
to be statistically better than the other methods for these
datasets. Note however that no statistical differences arefound
amongst all tested algorithms for theGlass, Liver, Wine and
Wisconsindatasets. Only a single dataset (sonar), do the
proposed techniques occasionally return a result which is
statistically worse than that attainable using FRNN. This may
well be due to the use of the fuzzy quantifiers in FRNN-VQRS,
though further experimental evaluation is required in order to
verify this. For FRNN-VQRS, the kernel-based modification
leads to a statistically similar performance generally. sKFRNN
and nonsKFRNN are better than FRNN-VQRS statistically
for the Glass and Sonar datasets, although worse for the
Arrythmia and Heart datasets. This may possibly be caused
by the existence of noisy data inArrythmia andHeart.

V. CONCLUSION

This paper has presented a new technique for the hybridi-
sation of fuzzy-rough sets and kernel methods, called kernel-
based fuzzy-rough sets (KFRS). In contrast to previous work,
the Tcos-transitivity constraint is relaxed. The only remaining
constraint which the proposed approach imposes is reflexivity.

Whilst attempting to identify suitable kernels, the prop-
erties are analysed from statistics perspective. It has been
demonstrated that all isotropic stationary kernels in the cor-
relation form of (17) are suitable for use with the KFRS



TABLE II
COMPARISON BETWEENFRNN,SKFRNN, NONSKFRNN

FRNN sKFRNN nonsKFRNN
Dataset Accy. RMSE Accy. RMSE Accy. RMSE

Arrhythmia 54.67 0.21 52.33 0.22 55.43 0.21
Glass 73.54 0.29 76.24 0.28 73.21 0.29
Heart 76.63 0.43 76.59 0.42 73.00 0.43
Liver 62.81 0.50 63.70 0.49 61.06 0.49
Sonar 85.25 0.43 84.69 0.43 85.95 0.43

Water 2 75.41 0.46 73.95 0.46 83.00 0.39
Water 3 67.87 0.40 65.79 0.39 75.77 0.34
Wine 97.47 0.20 98.15 0.21 96.12 0.21

Wisconsin 96.38 0.19 96.65 0.20 96.65 0.20

TABLE III
COMPARISON BETWEENFRNN-VQRS,SKFRNN-VQRS,NONSKFRNN-VQRS

FRNN-VQRS sKFRNN-VQRS nonsKFRNN-VQRS
Dataset Accy. RMSE Accy. RMSE Accy. RMSE

Arrhythmia 60.40 0.21 59.42 0.21 62.13 0.20
Glass 68.95 0.27 74.08 0.26 66.57 0.29
Heart 82.19 0.35 82.41 0.35 75.81 0.43
Liver 66.26 0.48 67.19 0.48 67.72 0.48
Sonar 79.38 0.37 80.83 0.36 75.98 0.41

Water 2 79.59 0.39 80.49 0.40 84.92 0.33
Water 3 73.18 0.37 72.67 0.38 80.26 0.31
Wine 97.14 0.10 96.97 0.12 94.22 0.15

Wisconsin 96.69 0.16 96.16 0.17 96.81 0.15

TABLE IV
STATISTICAL SIGNIFICANCE USING PAIRED T-TEST FORFRNN

Dataset FRNN sKFRNN nonsKFRNN sKFRNN-VQRS nonsKFRNN-VQRS
Arrythmia - - - v v

Glass - - - - -
Heart - - - v -
Liver - - - - -
Sonar - - - - *

Water2 - - v v v
Water3 - - v - v

Wine - - - - -
Wisconsin - - - - -

TABLE V
STATISTICAL SIGNIFICANCE USING PAIRED T-TEST FORFRNN-VQRS

Dataset FRNN-VQRS sKFRNN nonsKFRNN sKFRNN-VQRS nonsKFRNN-VQRS
Arrythmia - * * - -

Glass - v - - -
Heart - * - - -
Liver - - - - -
Sonar - - v - -

Water2 - - - - -
Water3 - - - - -

Wine - - - - -
Wisconsin - - - - -

approach. Two kernel-based fuzzy-rough set classifiers: kernel-
based fuzzy-rough nearest neighbour (KFRNN) and kernel-
based vaguely quantified rough nearest neighbour (KFRNN-
VQRS) have been introduced. The experimental results over
9 datasets, show that the new methods are effective, and that
they generally outperform the original techniques.

Topics for further investigation include the impact of the
choice of kernel, connectives and quantifiers on performance.
Also, (and as mentioned previously), the relationship between
the class imbalance of datasets and the statistical property of
kernels is a worthwhile avenue of exploration. Considering
hierarchical classification, another further extension tothis



work would be to examine how KFRS performs for the task
of feature selection [4].
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